

 Navigation

 	
 index

 	
 next |

 	Django Test Addons 0.3.6 documentation

Django Test Addons’s documentation!

Django test addons provides support for testing different databases along with
Django Web Framework. By default, django provides support for relational databases
only. Since no-sql database systems are being widely used in django community, testing
support for them is vital. As of now, django test addons provides testing support
for Mongodb, Redis, Neo4j, Memcache, Django Rest Framework APIs only. Support for more
databases might be provided in future.

Installation

pip install django-test-addons

Requirements

Django test addons requires the following:

	Python(2.7+)

	Django(1.6, 1.7, 1.8, 1.9)

The following packages are optional:

	Mongoengine (0.8.7)+ [http://mongoengine-odm.readthedocs.org/] - Testing support for Mongo DB.

	Django Redis (3.8.2)+ [https://pypi.python.org/pypi/django-redis] - Testing support Redis.

	Py2neo (2.0.6)+ [https://pypi.python.org/pypi/py2neo] - Testing support for Neo4j graph database.

	Python Memcached (1.53)+ [https://pypi.python.org/pypi/python-memcached] - Testing support for Memcache.

	Django Rest Framework (3.0.5)+ [http://django-rest-framework.readthedocs.org/en/stable/] - Testing support for Django Rest Framework Apis

Note

Package may work perfectly for older versions than specified. It’s just that it is not tested with them. So feel free to give it a try.

User Guide

	1. Installation

	2. Requirements

	3. Tutorial
	3.1. Getting Started

	3.2. Testing Mongodb
	3.2.1. Defining test settings

	3.2.2. Writing Tests

	3.3. Testing Memcache

	3.4. Testing Redis
	3.4.1. Defining test settings

	3.4.2. Writing Tests

	3.5. Testing Neo4j Graph database
	3.5.1. Defining test settings

	3.5.2. Writing Tests

	3.6. Testing Django Rest Framework APIs
	3.6.1. Writing Tests

	3.7. Composite Testing
	3.7.1. Composite Test Cases:

	3.8. Facing Issues

	4. Changelog
	4.1. Changes in version 1.0

	4.2. Changes in version 0.3.6

	4.3. Changes in 0.3.5

	5. Community

	6. Contributing

	7. License

	8. Indices and tables

Changelog

Changes in version 1.0

	Support for Django 1.9 along with Python 3

Changes in version 0.3.6

	Updated pypi download url to the latest version (Minor update)

Changes in version 0.3.5

	Fix APIClient bug. It was not working due to incorrect name error (use of self instead of cls)

Community

To get help with using MongoEngine, use the Django test addons mailing list [https://groups.google.com/forum/#!forum/django-test-addons] , raise an issue on github [https://github.com/hspandher/django-test-addons] or just mail me directly at hspandher@outlook.com.

Contributing

Yes please! I am always looking for contributions, additions and improvements.
Support for testing more databases is specifically required.

The source is available on GitHub [https://github.com/hspandher/django-test-addons]
and contributions are always encouraged. Contributions can be as simple as
minor tweaks to this documentation, the website or the core.

To contribute, fork the project on
GitHub [https://github.com/hspandher/django-test-addons] and send a
pull request.

License

The MIT License (MIT)

Copyright (c) 2015, Hakampreet Singh Pandher

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Indices and tables

	Index

	Search Page

 Copyright 2015, Hakampreet Singh Pandher.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Django Test Addons 0.3.6 documentation

1. Installation

pip install django-test-addons

2. Requirements

Django test addons requires the following:

	Python(2.7+)

	Django(1.6, 1.7, 1.8, 1.9)

The following packages are optional:

	Mongoengine (0.8.7)+ [http://mongoengine-odm.readthedocs.org/] - Testing support for Mongo DB.

	Django Redis (3.8.2)+ [https://pypi.python.org/pypi/django-redis] - Testing support Redis.

	Py2neo (2.0.6)+ [https://pypi.python.org/pypi/py2neo] - Testing support for Neo4j graph database.

	Python Memcached (1.53)+ [https://pypi.python.org/pypi/python-memcached] - Testing support for Memcache.

	Django Rest Framework (3.0.5)+ [http://django-rest-framework.readthedocs.org/en/stable/] - Testing support for Django Rest Framework Apis

Note

Package may work perfectly for older versions than specified. It’s just that it is not tested with them. So feel free to give it a try.

3. Tutorial

This tutorial provides a step-by-step description on how to use django test addons for
testing different database systems.

3.1. Getting Started

It is recommended to have local installation of respective databases just for testing.
Staging or shared database or any database with critical data should never be used in
testing, as database is cleaned after each test is ran. It is recommended to use a separate
settings file for testing.

Warning

Be Careful to use correct settings for test databases. Using staging or any other database may result in cleaning of the entire database.

If you haven’t installed django test addons already, use

pip install django-test-addons

3.2. Testing Mongodb

3.2.1. Defining test settings

Make sure you have running installation of mongodb and have mongoengine installed.
Just specify the settings for connection to mongodb instance in the settings file.
Define TEST_MONGO_DATABASE dict in your test file containing connection information.

Example:

Add this code to test settings file -

TEST_MONGO_DATABASE = {
 'db': 'test',
 'host': ['localhost'],
 'port': 27017,
}

Make sure to use same test database for all mongo database aliases. To clarify,
say you have following mongo connection settings in your development/production
settings containing two mongodb aliases.

MONGO_DATABASES = {
 'default': {
 'db': 'main',
 'host': ['193.34.32.11'], # random development server
 'port': 27017,
 },
 'miscellaneous': {
 'DB_NAME': 'misc',
 'HOST': ['193.34.32.11'],
 'PORT': 27017,
 }
}

In your test settings, make sure to disconnect all existing connections and connect
all mongodb aliases to test db.

import MONGO_DATABASES variable from development settings file or just use the
variable if you are using single file for testing with some environment settings.

import mongoengine

TEST_MONGO_DATABASE = {
 'db': 'test',
 'host': ['localhost'],
 'port': 27017,
}

map(lambda connection: mongoengine.connection.disconnect(connection), MONGO_DATABASES.keys())

MONGO_DATABASES = {connection: TEST_MONGO_DATABASE for connection in MONGO_DATABASES.keys()}

for connection_name, attrs in MONGO_DATABASES.items():
 mongoengine.connect(**dict(zip(['alias'] + attrs.keys(), [connection_name] + attrs.values())))

3.2.2. Writing Tests

Just import MongoTestCase from test_addons, and inherit test class from it.

Example

import test_addons

class TestSomething(test_addons.MongoTestCase):

 def test_instantiation(self):
 pass

3.3. Testing Memcache

Just specify CLEAR_CACHE=TRUE in your test class, if you want to clear cache too(it could be Memcache or Redis or any other caching framework that works with django). You must have CACHES configured in your test settings for this to work.

Example

import test_addons

class TestSomething(test_addons.MongoTestCase):

 CLEAR_CACHE = True

 def test_instantiation(self):
 pass

3.4. Testing Redis

3.4.1. Defining test settings

Make sure you have redis db installed and a running redis server. Just specify
TEST_CACHES dictionary in your test settings containing redis connection info.

Example:

TEST_CACHES = {
 'default': {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "127.0.0.1:6379:0",
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 }
 },
 'redis1': {
 "BACKEND": "django_redis.cache.RedisCache",
 "LOCATION": "127.0.0.1:6379:1",
 "OPTIONS": {
 "CLIENT_CLASS": "django_redis.client.DefaultClient",
 }
 },
}

Note

‘django_redis.cache.ShardClient’ does not allow flushing all db as of now, so make sure not to use it. Sharding is not required in testing environment anyway.

3.4.2. Writing Tests

Just import RedisTestCase from test_addons, and inherit test class from it.

Example

import test_addons

class TestSomething(test_addons.RedisTestCase):

 def test_instantiation(self):
 pass

3.5. Testing Neo4j Graph database

3.5.1. Defining test settings

Make sure you have neo4j graph installed and a running neo4j server. Just specify
NEO4J_TEST_LINK pointing to ip address of running neo4j server in your test settings file.

Example

NEO4J_TEST_LINK = 'http://localhost:7474/db/data'

Note

Since neo4j 2.0, it requires authentication to connection to your neo4j server. Considering it is unnecessary for testing environment, make sure to set ‘dbms.security.auth_enabled=false’ in your neo4j-server.properties file

3.5.2. Writing Tests

Just import Neo4jTestCase from test_addons, and inherit test class from it.

Example

import test_addons

class TestSomething(test_addons.Neo4jTestCase):

 def test_instantiation(self):
 pass

3.6. Testing Django Rest Framework APIs

It provides support for testing Django rest framework api’s along with one or
more databases.

Note

Test cases described above would have worked for apis as well, but they use default Test Client provided by Django, whereas it uses Test Client provided by DRF having some additional facilities like forcing authentication.

3.6.1. Writing Tests

Just import APITestCase for the specific database you are using (specify settings accordingly).

Available options are:

	APIRedisTestCase

	APIMongoTestCase

	APINeo4jTestCase

	APIMongoRedisTestCase

	APIRedisMongoNeo4jTestCase

Example
Say we want to use test DRF apis along with mongodb.

import test_addons

class TestSomething(test_addons.APIMongoTestCase):

 def test_instantiation(self):
 pass

3.7. Composite Testing

Often multiple databases are used simulataneously, thereby creating the need of
testing them simulataneously. Just to cater this need, django test addons provide
different combinations of TestCases for respective database combinations.

3.7.1. Composite Test Cases:

	MongoNeo4jTestCase

	MongoRedisTestCase

	RedisMongoNeo4jTestCase

	APIRedisTestCase

	APIMongoTestCase

	APINeo4jTestCase

	APIMongoRedisTestCase

	APIRedisMongoNeo4jTestCase

3.8. Facing Issues

Make sure you have defined settings exactly as mentioned. If you still can’t resolve the issue, you can use Django test addons mailing list [https://groups.google.com/forum/#!forum/django-test-addons] or raise an issue on github [https://github.com/hspandher/django-test-addons] or just mail me directly at hspandher@outlook.com

4. Changelog

4.1. Changes in version 1.0

	Support for Django 1.9 along with Python 3

4.2. Changes in version 0.3.6

	Updated pypi download url to the latest version (Minor update)

4.3. Changes in 0.3.5

	Fix APIClient bug. It was not working due to incorrect name error

5. Community

To get help with using MongoEngine, use the Django test addons mailing list [https://groups.google.com/forum/#!forum/django-test-addons] , raise an issue on github [https://github.com/hspandher/django-test-addons] or just mail me directly at hspandher@outlook.com.

6. Contributing

Yes please! I am always looking for contributions, additions and improvements.
Support for testing more databases is specifically required.

The source is available on GitHub [https://github.com/hspandher/django-test-addons]
and contributions are always encouraged. Contributions can be as simple as
minor tweaks to this documentation, the website or the core.

To contribute, fork the project on
GitHub [https://github.com/hspandher/django-test-addons] and send a
pull request.

7. License

The MIT License (MIT)

Copyright (c) 2015, Hakampreet Singh Pandher

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

8. Indices and tables

	Index

	Search Page

 Copyright 2015, Hakampreet Singh Pandher.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Django Test Addons 0.3.6 documentation

Index

 Copyright 2015, Hakampreet Singh Pandher.
 Created using Sphinx 1.3.5.

 _static/minus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		Django Test Addons 0.3.6 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Hakampreet Singh Pandher.
 Created using Sphinx 1.3.5.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

